
Chapter

19 Randomized Algorithms

Trees with snow on branches, “Half Dome, Apple Orchard, Yosemite,” 1933.
Ansel Adams. U.S. government image. U.S. National Archives and Records
Administration.

Contents

19.1 Generating Random Permutations 531

19.2 Stable Marriages and Coupon Collecting 534

19.3 Minimum Cuts . 539

19.4 Finding Prime Numbers 546

19.5 Chernoff Bounds . 551

19.6 Skip Lists . 557

19.7 Exercises . 563

530 Chapter 19. Randomized Algorithms

An important feature of any single-person computer game is that it shouldn’t

be boring. That is, the user should have a new and distinct experience each time

he or she plays the game. One way to achieve such a goal, of course, is to use

randomization. That is, the execution of the algorithm shouldn’t depend only on

its inputs, but also on the use of a random-number generator to produce random

numbers that are used to guide the execution of the algorithm. Thus, the structure

of such algorithms depend on the outcomes of random events. In this context, the

running time or correctness of an algorithm then becomes a random variable, which

is averaged over the values of the random numbers the algorithm uses.

Because they are used extensively in computer games, cryptography, and com-

puter simulations, methods that generate random numbers are built into most mod-

ern computers. Some methods, called pseudo-random-number generators, gener-

ate random-like numbers deterministically, starting with an initial number called a

seed. Other methods use hardware devices to extract “true” random numbers from

nature. In any case, we assume that our computer has access to numbers that are

sufficiently random for our analysis, and we explore in this chapter some of the

algorithms that can be designed using these tools.

A randomized algorithm is an algorithm whose behavior depends, in part, on

the outcomes of random choices or the values of random bits. The main advantage

of using randomization in algorithm design is that the results are often simple and

efficient. In addition, there are some problems that need randomization for them to

work effectively. For instance, consider the problem common in computer games

involving playing cards—that of randomly shuffling a deck of cards so that all pos-

sible orderings are equally likely. This problem is surprisingly subtle, and there are

even published stories of people who have been able to defeat online poker sys-

tems by exploiting the fact that those systems were not using a good card shuffling

algorithm. So one of the problems that we address in this chapter on randomized

algorithms is how to efficiently shuffle a deck of virtual cards. For example, an

algorithm that doesn’t generate all possible permutations with equal probability is

to take an approach based on the riffle shuffle used by humans to shuffle cards.

Thus, the shuffling methods we discuss in this chapter are quite different than this

approach, but are just as fast.

We study a number of other interesting randomized algorithms in this chap-

ter, as well, including finding prime numbers, which is important in cryptography,

the coupon collector problem, which has applications to biodiversity studies, and

methods for building search structures known as skip lists, using randomization.

We assume throughout this chapter that the reader is familiar with the principles of

basic probability covered in Section 1.2.4.

This is not the only place where we discuss randomized algorithms, however.

We also have discussions of randimized algorithms in the context of hash tables in

Chapter 6, random construction of binary search trees in Section 3.4, the random-

ized quick-sort algorithm in Section 8.2, the quick-select algorithm in Chapter 9,

and a page-caching algorithm in Section 20.4.

19.1. Generating Random Permutations 531

19.1 Generating Random Permutations

As mentioned above, randomly shuffling cards is an important part of any computer

gaming system that deals virtual cards. The problem of computing random permu-

tations has many more applications than just computerized card games, however,

including a host of other randomized algorithms, often as the very first step. In

this section, we explore two random permutation algorithms, both of which run in

linear time.

The input to the random permutation problem is a list, X = (x1, x2, . . . , xn),
of n elements, which could stand for playing cards or any other objects we want to

randomly permute. The output is a reordering of the elements of X , done in a way

so that all permutations of X are equally likely.

Both of the algorithms we discuss make use of a function, random(k), which

returns an integer in the range [0, k − 1] chosen uniformly and independently at

random. This function is based on the use of some source of random bits. So if k is

a power of 2, then we simply take log k random bits from this source and interpret

them as a number in the range from 0 to k − 1, inclusive. Every number in this

range is equally likely. If, on the other hand, k is not a power of 2, then we let

K be the smallest power of 2 greater than k and we take log K random bits from

this source. If interpreting these bits as a number gives us an integer in the range

[0, k − 1], then we take this as our output to the random(k) method. Otherwise, if

we get a number that is k or larger, then we discard these bits and try again. Thus,

if k is not a power of 2, then the running time of the random(k) method is itself a

random variable with expected value O(1). If k is a power of 2, however, then this

method always runs in O(1) time.

We give our first random permutation method in Algorithm 19.2. This algo-

rithm simply chooses a random number for each element in X and sorts the ele-

ments using these values as keys. (See Figure 19.1.) If all the keys are distinct,

then the resulting permutation is generated uniformly, as we show below.

Figure 19.1: A random permutation algorithm based on sorting random numbers.

532 Chapter 19. Randomized Algorithms

Algorithm randomSort(X):

Input: A list, X , of n elements

Output: A permutation of X so that all permutations are equally likely

Let K be the smallest power of 2 greater than or equal to n3

for each element, xi, in X do

Choose a random value, ri, in the range [0, K − 1] and associate it with xi

Sort X using the ri values as keys via radix-sort

if all the ri values are distinct then

return X according to this sorted order

else

Call randomSort(X)

Algorithm 19.2: A sorting-based algorithm for generating a random permutation.

Analyzing the Sorting-Based Random Permutation Algorithm

To see that every permutation is equally likely to be output by the randomSort
method, note that each element, xi, in X has an equal probability, 1/n, of having

its ri value be the smallest. Thus, each element in X has equal probability of

1/n of being the first element in the permutation. Note, in addition, that because

the algorithm will only terminate when all the elements are distinct, then there is

exactly one element with smallest ri value. Moreover, once we have removed this

value, each remaining value, xi, has equal probability of 1/(n − 1) of holding the

minimum ri value. Thus, the probability that any element from this group will be

chosen second is 1/(n− 1). Following this reasoning to its logical conclusion, this

approach implies that the permutation that is output had a probability of

(

1

n

)

·
(

1

n − 1

)

· · ·
(

1

2

)

·
(

1

1

)

=
1

n!

of being chosen. That is, all permutations are equally likely.

In addition, because we use radix sort to sort X by ri values, and K is O(n3),
each call to the randomSort method runs in O(n) time, not counting any recursive

calls that are made because a duplicate ri value is found. In any call to this method,

we choose n of the ri values, so the probability that any one of these is the same

as any other is at most n/n3 = 1/n2. Therefore, since there are n values chosen,

the probability that there is a duplicate found is at most n/n2 = 1/n. That is,

this algorithm runs in O(n) time, without any retries, with probability 1 − 1/n.

In general, we say that an event involving n items holds with high probability

if it occurs with probability at least 1 − 1/n. So the sorting-based permutation

algorithms runs in O(n) time with high probability.

19.1. Generating Random Permutations 533

The Fisher-Yates Shuffling Algorithm

There is another shuffling algorithm, which reduces all the uncertainty in its run-

ning time to calls of the random(k) method. Thus, if we had a way of implement-

ing this method so that it always ran in constant time, then this second algorithm

would be “almost deterministic,” in that it would always succeed and it would al-

ways run in O(n) time. This algorithm, which is known as the Fisher-Yates al-

gorithm, assumes that the input list is given as an array; the details are given in

Algorithm 19.3. (See Figure 19.4.)

Algorithm FisherYates(X):

Input: An array, X , of n elements, indexed from position 0 to n − 1
Output: A permutation of X so that all permutations are equally likely

for k = n − 1 downto 1 do

Let j ← random(k + 1) // j is a random integer in [0, k]
Swap X[k] and X[j] // This may “swap” X[k] with itself, if j = k

return X

Algorithm 19.3: The Fisher-Yates algorithm for generating a random permutation.

This algorithm considers the items in the array one at time from the end and

swaps each element with an element in the array from that point to the beginning.

Notice that each element has an equal probability, of 1/n, of being chosen as the

last element in the array X (including the element that starts out in that position).

Likewise, for the elements that remain in the first n− 1 positions, each of them has

an equal probability, of 1/(n−1), of being the last element in that range. Following

this reasoning to its logical conclusion implies that the permutation that is actually

output by the Fisher-Yates algorithm had a probability of
(

1

n

)

·
(

1

n − 1

)

· · ·
(

1

2

)

·
(

1

1

)

=
1

n!

of being the one output. That is, all permutations are equally likely. In addition, if

the random(k) method runs in O(1) time, then this algorithm runs in O(n) time.

(We revisit this issue in Section 19.5.3.)

Figure 19.4: The Fisher-Yates random permutation algorithm. The arcs represent

swaps, which start from 9 and go down to 1. Here, position 1 swaps with itself.

534 Chapter 19. Randomized Algorithms

19.2 Stable Marriages and Coupon Collecting

A common question biologists often ask with respect to a given ecosystem is to

determine the number of species that occupy that ecosystem. In order to get a

handle on such biodiversity questions, biologists have developed various tools for

sampling species. For instance, one tool that is used for this purpose is random

sampling, where an ecosystem is divided into a grid, like a checkerboard, and then

a careful census is prepared for a random subset of the squares in this grid. A

natural issue that arises in this application, then, is to determine the right number of

squares to sample in order to have a good chance of finding at least one individual

from every species in the ecosystem.

One way to get a handle on this estimate is to model it as a coupon collector

problem, which abstracts the essence of this estimation. We imagine that there is

a set, C, of n coupons and we are interested in collecting at least one of every

coupon in C. We can go a ticket window once a day and request a coupon, and

a clerk will choose one of the n coupons at random and give it to us. We cannot

expect the clerk to remember which coupons he has given us in the past, however,

so, each time he gives us a coupon, it is chosen uniformly and independently at

random from among the n coupons in C. The coupon collector problem, then, is

to determine the number of times we need to go to the ticket window before we

have collected all n coupons. So, for instance, in the application to biodiversity

estimation, each time a plant or animal is detected in a random sample is like a trip

to the ticket window in the coupon collector problem.

19.2.1 Analyzing the Coupon Collector Problem

Let X be a random variable representing the number of times that we need to visit

the ticket window before we get all n coupons. We can write X as

X = X1 + X2 + · · · + Xn,

where Xi is the number of trips we have to make to the ticket window in order to go

from having i − 1 distinct coupons to having i distinct coupons. So, for example,

X1 = 1, since we are guaranteed to get a distinct coupon in our first trip to the

ticket window, and X2 is the number of additional trips we must make to get our

second distinct coupon. After we have gotten i− 1 distinct coupons, our chance of

getting a new one in any trip to the window is

pi =
n − (i − 1)

n
,

since there are n coupons, but only n−(i−1) that we don’t already have at this point

in time. This implies that each Xi a geometric random variable with parameter,

pi. That is, if we imagine that we have a biased coin that only comes up heads with

19.2. Stable Marriages and Coupon Collecting 535

probability pi, then Xi is the number of times we have to flip this coin until we get

it to come up heads. The expected value, E[Xi], of Xi is therefore 1/pi.

By the linearity of expectation,

E[X] = E[X1] + E[X2] + · · · + E[Xn]

=
1

p1
+

1

p2
+ · · · + 1

pn

=
n

n
+

n

n − 1
+ · · · + n

1

= n
n
∑

i=1

1

i

= n Hn,

where Hn is the nth harmonic number, which, as we have observed elsewhere, can

be approximated as lnn ≤ Hn ≤ lnn + 1. In other words, the expected number of

times that we need to visit the ticket window in order to get at least one instance of

each of n coupons is nHn, which is approximately n lnn.

In some cases, such as in the biodiversity application discussed above, we

would like to bound the probability that we need to make significantly more than

n lnn trips to the ticket window to get all n coupons. Such a bound is known as a

tail estimate, since it involves bounding the end or “tail” of a probability distribu-

tion. Fortunately, in the case of the coupon collector problem, coming up with such

a tail bound is not that difficult.

Let us now consider that the coupons are numbered 1, 2, . . . , n and let Yi,t be a

random variable indicating the event that coupon number i was not collected even

after we have made t trips to the ticket window. Thus,

Pr(Yi,t = 1) =

(

1 − 1

n

)t

≤ e−t/n,

since 1 − x ≤ e−x, for 0 < x < 1 (see Theorem A.4). We can then bound the

probability that X is more than T = cn lnn, for some constant c ≥ 2, as follows:

Pr(X > T) ≤ Pr

(

n
∑

i=1

Yi,T ≥ 1

)

≤ n · Pr(Y1,T = 1)

≤ n · e−T/n

= n · e−c ln n

= n · n−c

= n−c+1.

Thus, with high probability, we will collect all n coupons after making cn lnn trips

to the ticket window, for c ≥ 2.

536 Chapter 19. Randomized Algorithms

19.2.2 The Stable Marriage Problem

Imagine a village consisting of n men and n women, all of whom are single, het-

erosexual, and interested in getting married. Every man has a list of the women

ordered by his preferences, and, likewise, every woman has a list of the men or-

dered by her preferences. The stable marriage problem is to match up the men and

women in a way that is stable. Such a matching is stable if there is no unmatched

man-woman pair, (x, y), such that x and y would prefer to be married to each other

than to their spouses. That is, it would be unstable if x preferred y over his wife

and y preferred x over her husband. (See Figure 19.5.)

Figure 19.5: An instance of the stable marriage problem. Each man and woman is

listed with his or her preference list, and the matching shown is stable. Note that

even though female 2 is married to her last choice, there is no man who prefers her

over his current wife.

In real life, this problem arises in the annual placement of residents in hospitals.

Residents rank order the hospitals that they would like to work in, and hospitals

rank the set of available residents for each of their available open slots. Then a

stable “marriage” is computed between residents and available slots in hospitals.

19.2. Stable Marriages and Coupon Collecting 537

The Proposal Algorithm

There is a simple algorithm for solving the stable marriage problem, which involves

men making proposals to women in a series of rounds.

A round begins with an unmatched man making a proposal to the female highest-

ranked on his list. If she is unmatched, then she accepts his proposal and the round

ends. If, on the other hand, she is matched, then she accepts his proposal only if

she ranks him higher than her current partner. In the case when the woman receiv-

ing the proposal is already matched, then whichever man she rejects repeats the

computation for this round, making a proposal to the next woman on his list (his

highest-ranked woman that he has not previously proposed to). Thus, a round con-

tinues in this way, consisting of a series of proposals and it ends when a previously

unmatched woman accepts a proposal. This proposal algorithm continues perform-

ing such rounds until all the men and women are matched. (See Algorithm 19.6.)

Algorithm StableMarriage(X, Y):

Input: A set, X , of n men and their prioritized lists of women in Y , and a set,

Y , of n women and their prioritized lists of men in X
Output: A stable marriage for X and Y

for each man, x, in X do

Let y be x’s highest-ranked woman

Have x propose to y
while y is matched to some man, z, such that z 	= x do

if y prefers x over z then

Match x and y
Unmatch z
Let x ← z

Let y be x’s highest-ranked woman he has not proposed to yet

Have x propose to y
Match x and y

Algorithm 19.6: The proposal algorithm for the stable marriage problem.

To see that the matching resulting from this proposal algorithm is stable, sup-

pose there is an unstable pair, (x, y), that are not matched by the algorithm, that is,

both x and y prefer each other to the partners they end up with by following the

proposal algorithm. Note that at the time x made his last proposal, to his current

partner, w, he had made a proposal to every woman that he ranked higher than w.

But this means that he would have made a proposal to y, which she would have

accepted, because she ranks x higher than the man she ended up with. Thus, such

a pair, (x, y), cannot exist.

538 Chapter 19. Randomized Algorithms

A Worst-Case Amortized Analysis

The worst-case running time of this algorithm is O(n2). To see this fact, note that

at the beginning of the algorithm, the total length of the lists of all n men is O(n2),
and at each step of the algorithm, some man is using up a proposal to a woman on

his list to whom he will never again propose. Thus, if we charge each entry in the

list of preferences by the men 1 cyber-dollar for the work we do in having a man

make a proposal, then we can pay for all the proposals using O(n2) cyber-dollars.

An Average-Case Analysis Based on Coupon Collecting

We can perform an average-case analysis of Algorithm 19.6, which has a much bet-

ter performance than the worst-case bound. For the sake of this analysis, suppose

the preference list for every man is an independent random permutation of the list

of women. Then, each time it is a man’s turn to make a proposal, he is making that

proposal to a random woman he has not proposed to before.

In fact, we can simplify this analysis even further to consider a version of the

algorithm where each time it is a man’s turn to make a proposal, he makes his pro-

posal to a random woman without consideration of his previous proposals. Such an

algorithm is memoryless, in the sense that each proposal a man makes is indepen-

dent of any proposal he made earlier. Still, note that in this memoryless proposal

algorithm if a man makes a proposal to a woman he has previously proposed to, she

will reject his proposal, since at that point in time she will be matched to someone

she prefers more than him. Thus, a bound on the running time of this memoryless

algorithm gives us a bound on the original algorithm with randomly ordered prefer-

ence lists, since the original version makes no more proposals than the memoryless

version.

The key observation to analyze the memoryless algorithm is to focus on the

women and realize that each round in this algorithm consists of a sequence of pro-

posals to independently chosen random women until a proposal is made to an un-

matched woman. That is, the memoryless algorithm is an instance of the coupon

collector problem where the names of the women are the coupons. Thus, by the

analysis of the coupon collector problem, the expected running time of the mem-

oryless stable marriage algorithm is O(n log n). Therefore, we have the following

theorem.

Theorem 19.1: The expected number of proposals made in the proposal algo-
rithm, for a set of n men and n women, is at most nHn, assuming the preference
list of each man is an independent random permutation of the list of women.

That is, the average-case running time of the proposal algorithm for the stable

marriage problem is O(n log n).

19.3. Minimum Cuts 539

19.3 Minimum Cuts

A cut, C, of a connected graph, G, is a subset of the edges of G whose removal

disconnects G. That is, after removing all the edges of C, we can partition the

vertices of G into two subsets, A, and B such that there are no edges between a

vertex in A and a vertex in B. (See Figure 19.7.) A minimum cut of G is a cut of

smallest size among all cuts of G.

f

e
 v

1

v
2

v
3

v
5

v
4

v
6

v
7

v
8

v
9

Figure 19.7: Example of a cut of a graph. The set of edges C = {e, f}, drawn with

thick lines, is a cut, since removing e and f partitions the graph into two connected

components. This cut is of minimum size.

In several applications, it is important to determine the size of a smallest cut

of a graph. For example, in a communications network, the failures of the edges

of a cut prevents the communication between the nodes on the two sides of a cut.

Thus, the size of a minimum cut and the number of such cuts give an idea of the

vulnerability of the network to edge failures. Small cuts are also important for

the automatic classification of web content. Namely, consider a collection of web

pages and model them as a graph, where vertices correspond to pages and edges to

links between pages. The size of a minimum cut provides a measure of how much

groups of pages have related content. Also, we can use minimum cuts to recursively

partition the collection into clusters of related documents. Similar considerations

can be made for minimum cuts in a social network.

As a starting point for computing minimum cuts, note that, for each vertex,

v, the edges incident on v form a cut, whose size is the degree of v, deg(v), since

removing all these edges separates v from the rest of the graph. Thus, the minimum

degree of the vertices of a graph is an upper bound on the size of its minimum cut.

540 Chapter 19. Randomized Algorithms

Also, recalling the notion of a biconnected graph, defined in Section 13.5, we have

that a minimum cut of a biconnected graph has size at least 2.

In Section 16.1, we present a related definition of a cut in a flow network with

respect to given pair of vertices, s, and t. The partition induced by such a cut has

vertex s on one side and vertex t on the other size. As explored in Exercise C-19.9,

one can compute a minimum cut of a graph by repeated applications of a maximum

flow algorithm to a flow network derived from G.

19.3.1 Contracting Edges

In the rest of this section, we show how to compute a minimum cut by means of a

randomized algorithm that is simple to implement. This algorithm repeatedly per-

forms contraction operations on the graph. Let G be a graph with n vertices, where

we allow G to have parallel edges. We denote with (v, w) any edge with endpoints

v and w. The contraction of an edge e of G with endpoints u and v consists of the

following steps that yield a new graph with n − 1 vertices, denoted G/e:

1. Remove edge e and any other edge between its endpoints, u and v.

2. Create a new vertex, w.

3. For every edge, f , incident on u, detach f from u and attach it to w. Formally

speaking, let z be the other endpoint of f . Change the endpoints of f to be z
and w.

4. For every edge, f , incident on v, detach f from v and attach it to w.

A series of contraction operations is shown in Figure 19.8. Note that a contraction

may create parallel edges. Specifically, if vertices u and v have a common neighbor,

z, the edges connecting z to u and v become parallel edges connecting z and w.

A contraction operation for an edge (u, v) has the important property of pre-

serving the set of cuts that do not include any edge (u, v). This property is formally

expressed by the following lemma.

Lemma 19.2: Let G be a graph that may have parallel edges and let G/e be the
graph resulting from G after contracting an edge, e, with endpoints u and v. A set,
C, of edges is a cut of G/e if and only if C is a cut of G that does not contain any
edge with endpoints u and v.

Lemma 19.2 implies that the set of cuts of G/e is the same as the set of cuts of

G that exclude any edge (u, v).
By Lemma 19.2, if we perform a series of contraction operations, we obtain a

graph whose cuts are a subset of the cuts of the original graph. In particular, if we

contract n − 2 edges, where n is the number of vertices of the graph, we obtain a

graph with two vertices connected by parallel edges that form one of the cuts of the

original graph. (See Figure 19.8.)

19.3. Minimum Cuts 541

v
1

v
2

v
3

v
5

v
4

v
6

v
7

v
8

v
9

v
1

v
2

v
3

v
5

v
4

w
1

v
9

v
7

(a) (b)

v
1

w
2

v
5

v
4

w
1

v
9

v
7

w
3

v
1

w
2

v
5

v
4

w
1

(c) (d)

w
3

w
4

v
5

v
4

w
1

w
7

w
6

(e) (f)

Figure 19.8: Sequence of contraction operations on a graph. (a–b) Contraction of

(v6, v8). (b–c) Contraction of (v2, v3). (c–d) Contraction of (v7, v9). (d–e) Con-

traction of (v1, w2). (f) Final graph obtained after contracting (v4, v5), yielding

vertex w5, (w4, w5), yielding vertex w6, and (w1, w2), yielding vertex w7. The

final graph has the same minimum cut as the original graph since each contraction

preserves the edges of this cut.

542 Chapter 19. Randomized Algorithms

19.3.2 Computing a Minimum Cut

Karger’s algorithm for computing a minimum cut is very simple. It performs a

sequence of edge contractions, selecting each time a random edge. The algorithm

stops when the graph has two vertices and returns the set of edges between them.

This method is summarized in Algorithm 19.9. Admittedly, the algorithm may not

return a minimum cut, since, for each such cut, the algorithm may have contracted

one of its edges. Nevertheless, Karger’s algorithm succeeds with high probability.

Algorithm ContractGraph(G):

Input: An undirected graph, G, with n vertices

Output: A cut of G that has minimum size with probability at least 2
n(n−1)

while G has more than 2 edges do

pick a random edge, e, of G
contract edge e
G ← G/e

return the edges of G

Algorithm 19.9: Single iteration of Karger’s randomized algorithm for finding a

minimum cut of a graph.

Let us evaluate the success probability of Algorithm 19.9, that is, the probability

that the algorithm returns a minimum cut. Let G be a graph with n vertices and m
edges, and let C be a given minimum cut of G. We will evaluate the probability

that the algorithm returns the cut C. Since G may have other minimum cuts, this

probability is a lower bound on the success probability of the algorithm.

Let Gi be the graph obtained after i contractions performed by the algorithm

and let mi be the number of edges of Gi. Assume that Gi−1 contains all the edges

of C. The probability that Gi also contains all the edges of C is equal to

1 − k

mi−1
,

since we contract any given edge of C with probability 1/mi−1 and C has k edges.

Thus, the probability, P , that the algorithm returns cut C is given by

P =
∏

i=0,...,n−3

(

1 − k

mi

)

.

Since k is the size of the minimum cut of each graph Gi, we have that each vertex

of Gi has degree at least k. Thus, we obtain the following lower bound on mi, the

number of edges of Gi:

mi ≥
k(n − i)

2
, for i = 0, 1, . . . , n − 3 .

19.3. Minimum Cuts 543

We can use the above inequality to derive a lower bound on P , as follows:

P =
n−3
∏

i=0

(

1 − k

mi

)

(19.1)

≥
n−3
∏

i=0

(

1 − 2k

k(n − i)

)

(19.2)

=
n−3
∏

i=0

(

n − i − 2

n − i

)

(19.3)

=

(

n − 2

n

)(

n − 3

n − 1

)(

n − 4

n − 2

)(

n − 5

n − 3

)

. . .

(

2

4

)(

1

3

)

(19.4)

=
2

n(n − 1)
(19.5)

=
1
(

n
2

) (19.6)

The above analysis shows that probability that Algorithm 19.9 returns cut C is

Ω
(

1
n2

)

, a decreasing function that tends to 0 as n grows. However, we can boost

the probability by running the algorithm multiple times. In particular, if we run the

algorithm for t
(

n
2

)

rounds, where t is a positive integer, we have that at least one

round returns cut C with probability

P (t) = 1 −
(

1 − 1
(

n
2

)

)t(n

2
)

.

By a well-known property (Theorem A.4) of the mathematical constant e, the base

of the natural logarithm, ln, we obtain

P (t) ≥ 1 − 1

et
.

In particular, if we choose t = c lnn, where c is a constant, then we get a success

probability, 1 − 1/nc, to obtain the cut C.

We turn now to the analysis of the running time of the algorithm. A contraction

operation can be executed in O(n) time. Thus, Algorithm 19.9 (ContractGraph)

takes O(n2) time. We summarize our findings with the following theorem.

Theorem 19.3: Let G be a graph with n vertices. For any positive integer con-
stant c, we can compute a minimum cut of G with a randomized algorithm that runs
in time O(n4 log n) and has success probability 1 − 1/nc.

Proof: The algorithm consists of executing Algorithm 19.9 (ContractGraph)

c
(

n
2

)

lnn times and returning the smallest of the cuts obtained.

544 Chapter 19. Randomized Algorithms

19.3.3 A Faster Algorithm

We now show how to improve the running time of the above contraction approach

for finding minimum cuts. By inspecting Equation 19.4, we note that the proba-

bility of avoiding cut C is at least 1
2 when the algorithm has contracted the graph

down to about n
√

2
vertices. This observation and the use of recursion leads to Al-

gorithm 19.10, due to Karger and Stein.

Algorithm RecursiveContractGraph(G, n):

Input: An undirected graph, G, with n vertices

Output: A cut of G that has minimum size with probability at least 1
log n

if G has at most 6 vertices then

return ContractGraph(G, 2)
else

G1 ← ContractGraph
(

G, n
√

2

)

C1 ← RecursiveContractGraph
(

G1,
n
√

2

)

G2 ← ContractGraph
(

G, n
√

2

)

C2 ← RecursiveContractGraph
(

G2,
n
√

2

)

if |C1| ≤ |C2| then

return C1

else

return C2

Algorithm 19.10: Single iteration of the randomized algorithm by Karger

and Stein for finding a minimum cut of a graph. The algorithms in-

vokes ContractGraph(G, r), a variation of method ContractGraph(G) (Algo-

rithm 19.9) that performs n− r contractions and returns the resulting graph, which

has r vertices.

Algorithm 19.10 (RecursiveContractGraph) makes two recursive calls. Also,

after each call, the size of the input graph is a constant fraction, 1
√

2
, of the size

before the call. Thus, the execution of the algorithm can be modeled by a binary

recursion tree with depth 2 log n.

The number of contractions performed in a call, excluding those within its re-

cursive calls, is proportional to the number of vertices of the graph. Since each

contraction takes linear time in the number of vertices, the work done within a call,

excluding its recursive calls, is quadratic in the number of vertices. Hence, the total

19.3. Minimum Cuts 545

amount of work performed at level i of the recursion tree is proportional to

2i

(

n
√

2
i

)2

= n2.

We conclude that RecursiveContractGraph(G, n) runs in O(n2 log n) time.

Let us analyze the probability that RecursiveContractGraph (Algorithm 19.10)

returns a given minimum cut, C. Referring to the recursion tree, we say that a node

is safe if its associated graph contains cut C. The recursive call at a safe node

succeeds in returning C if one of the following events occurs:

• graph G1 obtained from ContractGraph contains cut C and the recursive

call returns C;

• graph G2 obtained from ContractGraph contains cut C and the recursive

call returns C.

Clearly, each of the above events has the same probability. However, the events are

not mutually exclusive.

Recall that the height of a node of a tree is the length of the longest path from

the node to a leaf. Define P (i) as the probability that a safe node at height i of the

recursion tree has a safe leaf in its subtree. Thus, P (2 log n) denotes the probability

that algorithm RecursiveContractGraph succeeds in returning C. We know that

each of graphs G1 and G2 returned by ContractGraph contains C with probabil-

ity 1
2 . Thus, we can write the following recurrence relation:

P (i + 1) ≥ 1

2
P (i) +

1

2
P (i) −

(

1

2
P (i)

)2

= P (i) − 1

4
P (i)2.

The base case of the recurrence is for a leaf, which has height 0 and is associated

with a graph with at most 6 vertices:

P (0) ≥ 1
(

6
2

) =
1

15
.

Analyzing the recurrence relation, one can show that P (2 log n), the success prob-

ability of the algorithm, is Ω
(

1
log n

)

. (See Exercise C-19.10.) Thus, we obtain the

following theorem.

Theorem 19.4: Let G be a graph with n vertices. For any positive integer con-
stant c, we can compute a minimum cut of G with a randomized algorithm that runs
in time O(n2 log3 n) and has success probability 1 − 1/nc.

Proof: The algorithm consists of executing c log2 n times Algorithm 19.10

(RecursiveContractGraph) and returning the smallest of the cuts obtained.

546 Chapter 19. Randomized Algorithms

19.4 Finding Prime Numbers

An integer p is prime if p ≥ 2 and its only divisors are the trivial divisors 1 and

p. An integer greater than 2 that is not prime is composite. So, for example, 5,

11, and 101 are prime, whereas 25 and 713 (= 23 · 31) are composite. In this

section, we discuss randomized ways of testing for primality and for then using

these methods to find prime numbers. Such computations are useful, for example,

in cryptography, which is discussed in Chapter 24.

In order to lay the groundwork for finding primes, a few words about the mod-

ulo operator (mod) are in order. Recall that a mod n is the remainder of a when

divided by n. That is,

r = a mod n

means that r = a − ⌊a/n⌋n. In other words, there is some integer q, such that

a = qn + r. Note, in addition, that a mod n is always an integer in the set

{0, 1, 2, . . . , n − 1}.

It is sometimes convenient to talk about congruence modulo n. If

a mod n = b mod n,

we say that a is congruent to b modulo n, which we call the modulus, and we write

a ≡ b (mod n).

Therefore, if a ≡ b mod n, then a − b = kn for some integer k.

Having laid this groundwork, we are now ready for the first theorem of this

chapter, which is known as Fermat’s Little Theorem.

Theorem 19.5 (Fermat’s Little Theorem): Let p be a prime, and let x be an
integer such that x mod p 	= 0 and 0 < x < p. Then

xp−1 ≡ 1 (mod p).

Proof: We know that, for 0 < x < p, the set {1, 2, . . . , p − 1} and the set

{x · 1, x · 2, . . . , x · (p − 1)} contain exactly the same elements, when we do all

arithmetic modulo p (see Exercise C-19.8). So when we multiply the elements of

the sets together, we get the same value, namely,

1 · 2 · · · (p − 1) = (p − 1)!.

In other words,

(x · 1) · (x · 2) · · · (x · (p − 1)) ≡ (p − 1)! (mod p).

If we factor out the x terms, we get

xp−1(p − 1)! ≡ (p − 1)! (mod p).

Thus, because p is prime, we can cancel the term (p− 1)! from both sides, yielding

xp−1 ≡ 1 mod p, which is the desired result.

19.4. Finding Prime Numbers 547

19.4.1 Primality Testing

Prime numbers play an important role in computations involving numbers, such

as cryptographic computations, as we noted above. But how do we test whether a

number is prime, particularly if it is large?

Testing all possible divisors of a number takes exponential time, so we need

an alternative to the method many of us used to test for primality on grade-school

Math assignments. Alternatively, Fermat’s Little Theorem (Theorem 19.5) seems

to suggest an efficient solution. Perhaps we can somehow use the equation

ap−1 ≡ 1 mod p

to form a test for p. That is, let us pick a number a, and raise it to the power p − 1.

If the result is not 1, then the number p is definitely not prime. Otherwise, there’s a

chance it is. Would repeating this test for various values of a prove that p is prime?

Unfortunately, the answer is “no.” There is a class of numbers, called Carmichael

numbers, that have the property that an−1 ≡ 1 mod n for all 1 ≤ a ≤ n − 1, but

n is composite. The existence of these numbers ruins such a simple way to test for

primality. Example Carmichael numbers are 561 and 1105.

Independent Repetitions: A Template for Primality Testing

While the above simple test won’t work, there is a related approach that will work,

by making more sophisticated use of Fermat’s Little Theorem. Such a probabilistic

test of primality is based on the following general approach. Let n be an odd integer

that we want to test for primality, and let witness(x, n) be a Boolean function of a

random variable x and n with the following properties:

1. If n is prime, then witness(x, n) is always false. So if witness(x, n) is true,

then n is definitely composite.

2. If n is composite, then witness(x, n) is false with probability q < 1.

The function witness is said to be a compositeness witness function with error

probability q, for q bounds the probability that witness will incorrectly identify

a composite number as possibly prime. By repeatedly computing witness(x, n)
for independent random values of the parameter x, we can determine whether n is

prime with an arbitrarily small error probability. The probability that witness(x, n)
would incorrectly return “false” for k independent random x’s, when n is a com-

posite number, is qk. A template for a probabilistic primality testing algorithm

based on this observation is shown in Algorithm 19.11. This algorithm assumes we

have a compositeness witness function, witness, that satisfies the two conditions

above. In order to turn this template into a full-blown algorithm, we need only

specify the details of how to pick random numbers, x, and compute witness(x, n),
the composite witness function.

548 Chapter 19. Randomized Algorithms

Algorithm RandomizedPrimalityTesting(n, k):

Input: Odd integer n ≥ 2 and confidence parameter k
Output: An indication of whether n is composite (which is always correct) or

prime (which is incorrect with error probability 2−k)

// This method assumes we have a compositeness witness function witness(x, n)
with error probability q < 1.

t ← ⌈k/ log2(1/q)⌉
for i ← 1 to t do

x ← random()
if witness(x, n) then

return “composite”

return “prime”

Algorithm 19.11: A template for a probabilistic primality testing algorithm based

on a compositeness witness function witness(x, n). We assume that the method

random() picks a value at random from the domain of the variable x.

If the method RandomizedPrimalityTesting(n, k, witness) returns “compos-

ite,” we know with certainty that n is composite. However, if the method returns

“prime,” the probability that n is actually composite is no more than 2−k. Indeed,

suppose that n is composite but the method returns “prime.” We have that the wit-

ness function witness(x, n) has evaluated to true for t random values of x. The

probability of this event is qt. From the relation between the confidence parameter

k, the number of iterations t, and the error probability q of the witness function

established by the first statement of the method, we have that qt ≤ 2−k.

Given the parameter k, which is known as a confidence parameter, we can

make t = ⌈k/ log2(1/q)⌉ independent repetitions of our test to get force our prob-

ability of failure to be at most 2−k. For instance, taking k = 30, forces this failure

probability to be lower than the probability that the average person will, in their

lifetime, be hit by lightning. This approach of repeating independent trials of a

randomized algorithm to force a failure probability down below a probability de-

termined by a specified confidence parameter is a common pattern in the design of

randomized algorithms.

The Rabin-Miller Primality Testing Algorithm

We now describe the Rabin-Miller algorithm for primality testing. It is based on

Fermat’s Little Theorem (Theorem 19.5) and on the following lemma.

Lemma 19.6: Let p be a prime number greater than 2. If x is an element of Zp

such that

x2 ≡ 1 (mod p),

then either x ≡ 1 (mod p) or x ≡ −1 (mod p).

19.4. Finding Prime Numbers 549

A nontrivial square root of the unity in Zn is an integer 1 < x < n − 1 such

that x2 ≡ 1 (modn). Lemma 19.6 states that if n is prime, there are no nontrivial

square roots of the unity in Zn. The Rabin-Miller algorithm uses this fact to define

the witness(x, n) function as shown below:

Algorithm witness(x, n):

Write n − 1 as 2km, where m is odd.

Compute y ← xm mod n
if y ≡ 1 (modn) then

return false // n is probably prime

for i ← 1 to k − 1 do

if y ≡ −1 (modn) then

return false // n is probably prime

y ← y2 mod n
return true // n is definitely composite

As we explore in an exercise (C-19.12), if the Rabin-Miller composite witness

function returns true, then n is definitely composite. The error probability of the

cases when Rabin-Miller composite witness algorithm returns false is provided by

the following lemma, stated without proof.

Lemma 19.7: Let n be a composite number. There are at most (n − 1)/4 posi-
tive values of x in Zn such that the Rabin-Miller compositeness witness function
witness(x, n) returns true.

We conclude as follows:

Theorem 19.8: Given an odd positive integer n and a parameter k > 0, the
Rabin-Miller algorithm determines whether n is prime, with error probability 2−k,
by performing O(k log n) arithmetic operations.

Finding Prime Numbers

A primality testing algorithm can be used to select a random prime in a given range,

or with a prespecified number of bits. We exploit the following result from number

theory, stated without proof.

Theorem 19.9: The number, π(n), of primes that are less than or equal to n is
Θ(n/ lnn). In fact, if n ≥ 17, then n/ lnn < π(n) < 1.26n/ lnn.

A consequence of Theorem 19.9 is that a random integer n is prime with prob-

ability 1/ lnn. Thus, to find a prime with a given number b of bits, we can again

use the pattern of repeated independent trials. In particular, note that if we generate

a random b-bit odd number, n, then it has ⌈log n⌉ ≥ ⌈lnn⌉ bits. So n is prime with

probability at least 1/b; hence, repeating a primality test for kb such numbers gives

us the following.

550 Chapter 19. Randomized Algorithms

Theorem 19.10: Given an integer b and a confidence parameter k, a random
prime with b bits can be generated by performing O(kb) primality tests, with prob-
ability at least 1 − 2−k.

Las Vegas and Monte Carlo Algorithms

Note that in Theorem 19.10 the confidence parameter is bounding a probability

that the algorithm takes longer than the stated time to run, whereas the confidence

parameter in the Rabin-Miller algorithm is bounding the probability that the algo-

rithm produces a wrong answer. These two scenarios arise so often in the context of

randomized algorithms that they have names. A randomized algorithm that always

succeeds in producing a correct output, but whose running time depends on random

events is known as a Las Vegas algorithm. A randomized algorithm that always

has a deterministic running time, but whose output may be incorrect, with some

probability, is known as a Monte Carlo algorithm. We summarize the distinction

between these two categories of randomized algorithms in Table 19.12.

Running Time Correctness

Las Vegas Algorithm probabilistic certain

Monte Carlo Algorithm certain probabilistic

Table 19.12: The difference between Las Vegas and Monte Carlo algorithms.

Note that if we have a deterministic way to test for correctness, we can always

turn a Monte Carlo algorithm into a Las Vegas algorithm, as we explore in Exer-

cise C-19.13. But without such a testing algorithm, we have no easy way of turning

a Monte Carlo algorithm into a Las Vegas algorithm. Nevertheless, we do have

an easy way to turn any Las Vegas algorithm into a Monte Carlo algorithm, sim-

ply by running the Las Vegas algorithm for an amount of time determined by its

confidence parameter and either outputting the correct answer, if the algorithm has

terminated in that time, or outputting “sorry” if it has not. Moreover, if we use a

Monte Carlo algorithm as a subroutine in what would otherwise be a Las Vegas

algorithm, then the resulting algorithm is Monte Carlo, using this same argument.

Such is the case if we combine Theorems 19.8 and 19.10.

In addition, we say that a Monte Carlo algorithm that outputs yes-no answers

has a one-sided error if, as in the Rabin-Miller algorithm, one of its outputs, “yes”

or “no,” is always correct. Otherwise, it has a two-sided error.

19.5. Chernoff Bounds 551

19.5 Chernoff Bounds

Quite often in the analysis of randomized algorithms we are interested in proving a

bound on a running time with high probability. A useful collection of tools that are

frequently used to perform such analyses are the Chernoff bounds we discuss in

this section. For instance, we use one in Section 6.3.3 to analyze the performance

of a hash table that uses linear probing to resolve collisions.

19.5.1 Markov’s Inequality

Any discussion of Chernoff bounds begins with a foundational fact of probability

known as Markov’s inequality, which can be stated as follows.

Theorem 19.11: Let X be a random variable such that X ≥ 0. Then, for all
a > 0,

Pr(X ≥ a) ≤ E[X]

a
.

Proof: Let Y be a 0-1 indicator random variable that is 1 if X ≥ a. Then, since

X ≥ 0,

Y ≤ X

a
.

Taking expectations of both sides, we get

E[Y] ≤ E[X]

a
,

by the linearity of expectation. The theorem follows, then, by observing that

E[Y] = Pr(Y = 1) = Pr(X ≥ a).

An example application of Markov’s inequality is to note that at most 10%

of the U.S. population can have more than 10 times the average net worth of any

American.

The bounds that can be derived directly from using Markov’s inequality are not

always the tightest, but they are usually simple. Moreover, another nice feature of

Markov’s inequality is that we don’t have to know anything more about X than the

fact that it is nonnegative and has expected value E[X]. In fact, it is sufficient for

us simply to have an upper bound on E[X] in order to apply Markov’s inequality.

For example, using Markov’s inequality and Theorem 19.1, we can conclude that

there is at most a 10% chance that the proposal algorithm for the stable marriage

problem will make more than 10nHn proposals, assuming the preference list of

each man is an independent random permutation of the list of women.

552 Chapter 19. Randomized Algorithms

19.5.2 Sums of Indicator Random Variables

Let X = X1 + X2 + · · · + Xn be the sum of n independent 0-1 indicator random

variables, such that Xi = 1 with probability pi. Using the language of probability

theory, X is a random variable from the binomial distribution. Intuitively, X is

equal to the number of heads one gets by flipping n coins such that the ith coin

comes up heads with probability pi. Define the mean, or expected value of X , as

µ = E[X] =
n
∑

i=1

pi.

Then we have the following Chernoff bound.

Theorem 19.12: For δ > 0,

Pr(X > (1 + δ)X) ≤
[

eδ

(1 + δ)(1+δ)

]µ

.

Proof: Applying Markov’s inequality, after raising both sides of the probabilistic

inequality to the power eλ, for λ > 0, we get

Pr(X > (1 + δ)µ) = Pr(eλX > eλ(1+δ)µ)

≤ E[eλX]

eλ(1+δ)µ

=

∏n
i=1 E[eλXi]

eλ(1+δ)µ
,

because the Xi’s are mutually independent. Note that random variable eλXi takes

on the value eλ with probability pi, and the value 1 with probability 1 − pi. Thus,

E[eλXi] = eλ + 1 − pi. So we have

Pr(X > (1 + δ)µ) ≤
∏n

i=1(e
λ + 1 − pi)

eλ(1+δ)µ

=

∏n
i=1(1 + pi(e

λ − 1))

eλ(1+δ)µ
.

We can use the inequality 1 + x < ex for x = pi(e
λ − 1), to show

Pr(X > (1 + δ)µ) ≤
∏n

i=1 epi(e
λ
−1)

eλ(1+δ)µ

=
e(
∑

n

i=1
pi(e

λ
−1))

eλ(1+δ)µ

=
e(eλ

−1)µ

eλ(1+δ)µ
.

Taking λ = ln(1 + δ), which is positive for δ > 0, completes the theorem.

19.5. Chernoff Bounds 553

We have the following Chernoff bound as well.

Theorem 19.13: For 0 < δ < 1,

Pr(X < (1 − δ)X) ≤
[

e−δ

(1 − δ)(1−δ)

]µ

.

Proof: The proof is similar to that of Theorem 19.12, except that we rewrite the

probability as Pr(e−λX > e−λ(1−δ)µ) and let λ = ln(1/(1 − δ)).

Application: Processor Load Balancing

Suppose we have a set of n processors and a set of n jobs for them to perform, but

no good way of assigning jobs to processors. So we just assign jobs to processors

at random. What is a good high-probability upper bound on the number of jobs

assigned to any processor?

We can answer this question using a Chernoff bound. Let X be a random

variable representing the number of jobs assigned to processor 1. Then X can be

written as

X = X1 + X2 + · · ·Xn,

where Xi is the 0-1 indicator random variable that job i is assigned to processor

1. Thus, Pr(Xi = 1) = 1/n and µ = E[X] = 1. Since the Xi’s are clearly

independent, we can apply the Chernoff bound from Theorem 19.12 to get, for any

integer m > 1,

Pr(X > m) ≤ em−1

mm
.

After a bit of algebra, one can show, for

m ≥ 3 lnn

ln lnn
,

and n ≥ 28, that

em−1

mm
≤ 1

n2
.

Thus, the probability that processor 1 has more than m jobs assigned to it by this

random assignment is at most 1/n2. Therefore, the probability that any processor

is assigned more than m jobs is at most n/n2 = 1/n. In other words, the number of

processors assigned to any processor is O(log n/ log log n) with high probability.

554 Chapter 19. Randomized Algorithms

19.5.3 Sums of Geometric Random Variables

Let Y be a random variable that is the sum of n independent geometric random

variables with parameter p. That is,

Y = Y1 + Y2 + · · · + Yn,

where each Yi is a number of times to flip a coin, which comes up heads with

probability p, until getting an outcome of heads. Using the language of probability

theory, Y is a random variable from the negative binomial distribution. In this

case,

E[Yi] = 1/p, for each i = 1, 2, . . . , n;

hence, E[Y] = αn, where α = 1/p.

The Chernoff bound for Y that we derive in this section concerns the characteri-

zation of the probability that Y exceeds its mean, which is αn = n/p. In particular,

we are interested in the probability,

Pr(Y > (α + t)n),

where t > 0. That is, using the coin flipping metaphor, we are interested in the

probability that we have to flip a coin more than (α + t)n times to get n heads.

Relating the Binomial and Negative Binomial Distributions

In order to bound this probability, let us consider another random variable, X ,

which is the sum of (α + t)n independent indicator random variables, each of

which is 1 with probability p. That is, X is the number of heads we get from

flipping (α + t)n coins, each of which comes up heads with probability p. This

random variable, which comes from the binomial distribution, can help us bound

the above probability for Y , which comes from the negative binomial distribution,

because

Pr(Y > (α + t)n) = Pr(X < n).

In other words, the probability that it takes more than (α + t)n coin tosses to get n
heads is equal to the probability that we get fewer than n heads in exactly (α + t)n
coin tosses.

Note that X is the same kind of random variable we discussed in the previous

subsection. Thus, we can use Theorem 19.13 to analyze it. In this case, note that if

we let µ = E[X], then

µ = p(α + t)n

= p((1/p) + t)n

= (1 + tp)n.

19.5. Chernoff Bounds 555

We use the above fact in the following application of Theorem 19.13.

Lemma 19.14: For t > 0,

Pr(Y > (α + t)n) ≤ e−tpn(1 + tp)n.

Proof: We already observed that Pr(Y > (α + t)n) = Pr(X < n), so, in

order to apply Theorem 19.13, we need to bound the probability that X is less than

(1 − δ)µ, where this quantity is equal to n. That is, we have

(1 − δ)µ = (1 − δ)(1 + tp)n = n.

Hence,

1 − δ =
1

1 + tp
and − δ =

−tp

1 + tp
.

Thus, by Theorem 19.13,

Pr(X < (1 − δ)µ) <

[

e−tp/(1+tp)

[1/(1 + tp)]1/(1+tp)

](1+tp)n

= e−tpn(1 + tp)n.

This lemma allows us to then derive the following Chernoff bound, in the spirit

of Theorem 19.12.

Theorem 19.15: Let Y = Y1 + Y2 + · · · + Yn be the sum of n independent
geometric random variables with parameter p. Then, for α = 1/p and t ≥ α,

Pr(Y > (α + t)n) ≤ e−tpn/5.

Proof: By Lemma 19.14,

Pr(Y > (α + t)n) ≤ e−tpn (1 + tp)n .

Unfortunately, if we use the inequality, 1 + x ≤ ex, with x = tp, to bound the

righthand term in the above equation, then we get a useless result. So, instead, we

use a better approximation, namely, that, if x ≥ 1, then 1 + x < ex/(1+1/4). Thus,

for t ≥ α,

Pr(Y > (α + t)n) ≤ e−tpn · e4tpn/5

= e−tpn/5.

556 Chapter 19. Randomized Algorithms

A More Realistic Analysis of Fisher-Yates Random Shuffling

In the analysis given earlier for the Fisher-Yates shuffling algorithm to generate

a random permutation, we assumed that the random(k) method, which returns a

random integer in the range [0, k − 1], always runs in O(1) time. If we are using a

random-number generator based on the use of unbiased random bits, however, this

is not a realistic assumption.

In a system based on using random bits, we would most naturally implement

the random(k) method by generating ⌈log k⌉ random bits, interpreting these bits as

an unsigned integer, and then repeating this operation until we got an integer in the

range [0, k − 1]. Thus, counting each iteration in such an algorithm as a “step,” we

could conservatively say that the random(k) method runs in 1 step with probability

1/2, 2 steps with probability 1/22, and, in general, in i steps with probability 1/2i.

That is, its running time is a geometric random variable with parameter

p =
1

2
.

Under this more realistic assumption, the running time of the Fisher-Yates ran-

dom permutation algorithm is proportional to the sum,

Y = Y1 + Y2 + · · ·Yn−1,

where each Yi is the number of steps performed in the ith call to the random
method. In other words, Y is the sum of n − 1 independent geometric random

variables with parameter p = 1/2, since the running times of the calls to the

random(k) method are independent. Thus, focusing on the steps used in calls

to this method, the expected running time of the Fisher-Yates algorithm is

E[Y] = 2(n − 1).

Given this information, we can use the Chernoff bound for a sum of independent

geometric random variables given in Theorem 19.15, with α = 2, to bound the

probability that the Fisher-Yates algorithm takes more than 4n steps as follows:

Pr(Y > 4n) ≤ e−n/5.

Therefore, under this more realistic analysis, the Fisher-Yates algorithm runs in

O(n) time with high probability.

19.6. Skip Lists 557

19.6 Skip Lists

An interesting data structure for efficiently realizing the ordered set of items is

the skip list. This data structure makes random choices in arranging the items

in such a way that search and update times are logarithmic on average. A skip

list S for an ordered dictionary, D, of key-value pairs consists of a series of lists

{S0, S1, . . . , Sh}. Each list Si stores a subset of the items of D sorted by a nonde-

creasing key plus items with two special keys, denoted −∞ and +∞, where −∞
is smaller than every possible key that can be inserted in D and +∞ is larger than

every possible key that can be inserted in D. In addition, the lists in S satisfy the

following (see Figure 19.13):

• S0 contains every item in D (plus special items with keys −∞ and +∞).

• For i = 1, . . . , h−1, list Si contains (in addition to −∞ and +∞) a randomly

generated subset of the items in list Si−1.

• Sh contains only −∞ and +∞.

It is customary to visualize a skip list S with list S0 at the bottom and lists S1, . . . , Sh

above it. Also, we refer to h as the height of skip list S.

Intuitively, the lists are set up so that Si+1 contains essentially every other item

in Si. The items in Si+1 are chosen at random from the items in Si by picking each

item from Si to also be in Si+1 with probability 1/2. That is, in essence, we “flip a

coin” for each item in Si and place that item in Si+1 if the coin comes up “heads.”

Thus, we expect S1 to have about n/2 items, S2 to have about n/4 items, and, in

general, Si to have about n/2i items. In other words, we expect the height h of

S to be about log n. We view a skip list as a two-dimensional collection of nodes

arranged horizontally into levels and vertically into towers. Each level is a list Si

and each tower contains nodes storing the same item across consecutive lists.

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0

8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

Figure 19.13: Example of a skip list.

558 Chapter 19. Randomized Algorithms

19.6.1 Searching

The nodes in a skip list can be traversed using the following operations:

after(p): Return the node following p on the same level.
before(p): Return the node preceding p on the same level.
below(p): Return the node below p in the same tower.
above(p): Return the node above p in the same tower.

We assume that the above operations return null if the node requested does not

exist. Searching in a skip list is based on the method shown in Algorithm 19.14.

Algorithm SkipSearch(k):

Input: A search key k
Output: Node in S whose item has the largest key less than or equal to k

Let p be the topmost, left node of S (which should have at least 2 levels).

while below(p) 	= null do

p ← below(p) // drop down

while key(after(p)) ≤ k do

Let p ← after(p) // scan forward

return p.

Algorithm 19.14: Algorithm for searching in a skip list S.

Note that we begin the SkipSearch method by setting p to the topmost, left

node in the skip list S, and repeating the following steps (see Figure 19.15):

1. If S.below(p) is null, then the search terminates—we are at the bottom and

have located the largest item in S with key less than or equal to the search

key k. Otherwise, we drop down to the next lower level in the present tower.

2. Starting at node p, we move p forward until it is at the right-most node on

the present level such that key(p) ≤ k. We call this the scan forward step.

Note that such a node always exists, since each level contains the special

keys +∞ and −∞. In fact, after we perform the scan forward for this level,

p may remain where it started. In any case, we then repeat the previous step.

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0

8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

Figure 19.15: Example of a search in a skip list. The positions visited and the links

traversed when searching (unsuccessfully) for key 52 are drawn with thick lines.

19.6. Skip Lists 559

19.6.2 Update Operations

Given the SkipSearch method, it is easy to implement find(k)—we simply per-

form p ← SkipSearch(k) and test whether key(p) = k. As it turns out, the expected

running time of the SkipSearch algorithm is O(log n). We postpone this analysis,

however, until after we discuss the update methods for skip lists.

Insertion

The insertion algorithm for skip lists uses randomization to decide how many nodes

for the new item (k, e) should be added to the skip list. We begin the insertion of

a new item (k, e) into a skip list by performing a SkipSearch(k) operation. This

gives us the position p of the bottom-level item with the largest key less than or

equal to k (note that p may be the node of the special item with key −∞). We

then insert (k, e) in this bottom-level list immediately after p. After inserting the

new item at this level, we call a method random() that returns a random bit that is

1 (which stands for “heads”) or 0 (which stands for “tails”), each with probability

1/2. If the bit comes up tails, then we stop here. If the bit comes up heads, on the

other hand, then we backtrack to the previous (next higher) level and insert (k, e)
in this level at the appropriate position. We again generate a random bit, and if it

comes up heads, we go to the next higher level and repeat. Thus, we continue to

insert the new item (k, e) in lists until we finally get a flip that comes up tails. We

link together all the nodes for the new item, (k, e), created in this process to create

the tower for (k, e). We give the pseudocode for this insertion algorithm for a skip

list S in Algorithm 19.16 and we illustrate this algorithm in Figure 19.17. Our

insertion algorithm uses an operation insertAfterAbove(p, q, (k, e)) that inserts a

node storing the item (k, e) after p (on the same level as p) and above the node q,

returning the node r for the new item (and setting internal references so that after,
before, above, and below methods will work correctly for p, q, and r).

Algorithm SkipInsert(k, e):

Input: Item (k, e)
Output: None

p ← SkipSearch(k)
q ← insertAfterAbove(p,null, (k, e)) // we are at the bottom level

while random() = 1 do

while above(p) = null do

p ← before(p) // scan backward

p ← above(p) // jump up to higher level

q ← insertAfterAbove(p, q, (k, e)) // insert new item

Algorithm 19.16: Insertion in a skip list, assuming random() returns a random

number between 0 and 1, and we never insert past the top level.

560 Chapter 19. Randomized Algorithms

17 31

555012 17 20 25 31 38 39

4412

17 55

17

17

55

25

25

S0

S5

S4

S3

S2

S1

25 55

44

8-

8-

8-

8-

8-

8-

8+

8+

8+

8+

8+

8+

31

38

42

42

42

42

Figure 19.17: Insertion of an element with key 42 into the skip list of Figure 19.13.

The nodes visited and the links traversed are drawn with thick lines. The nodes

inserted to hold the new item are drawn with dashed lines.

Removal

Like the search and insertion algorithms, the removal algorithm for a skip list S is

quite simple. In fact, it is even easier than the insertion algorithm. Namely, to per-

form a remove(k) operation, we begin by performing a search for the given key k.

If a node p with key k is not found, then we return the null element. Otherwise, if

a node p with key k is found (on the bottom level), then we remove all the nodes

above p, which are easily accessed by using above operations to climb up the tower

of this item in S starting at p. The removal algorithm is illustrated in Figure 19.18

and a detailed description of it is left as an exercise (R-19.14). As we show in

the next subsection, the running time for removal in a skip list is expected to be

O(log n).

Before we give this analysis, however, there are some minor improvements to

the skip list data structure we would like to discuss. First, we don’t need to store

references to items at the levels above 0, because all that is needed at these levels are

references to keys. Second, we don’t actually need the above method. In fact, we

don’t need the before method either. We can perform item insertion and removal

in strictly a top-down, scan-forward fashion, thus saving space for “up” and “prev”

references. We explore the details of this optimization in an exercise (C-19.17).

38

555012 17 38 39 44

4412

17 55

17

55

55

S0

S5

S4

S3

S2

S1

42

42

42

42

31

31

31

25

25

25

2520

17

8-

8-

8-

8-

8-

8-

17

8+

8+

8+

8+

8+

8+

Figure 19.18: Removal of the item with key 25 from the skip list of Figure 19.17.

The positions visited and the links traversed after the initial search are drawn with

thick lines. The positions removed are drawn with dashed lines.

19.6. Skip Lists 561

Maintaining the Topmost Level

A skip list S must maintain a reference to the topmost, left position in S as an

instance variable, and must have a policy for any insertion that wishes to continue

inserting a new item past the top level of S. There are two possible courses of

action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value

that is a function of n, the number of elements currently in the dictionary (from

the analysis we will see that h = max{10, 2⌈log n⌉} is a reasonable choice, and

picking h = 3⌈log n⌉ is even safer). Implementing this choice means that we

must modify the insertion algorithm to stop inserting a new item once we reach the

topmost level (unless ⌈log n⌉ < ⌈log(n+1)⌉, in which case we can now go at least

one more level, since the bound on the height is increasing).

The other possibility is to let an insertion continue inserting a new element as

long it keeps returning heads from the random-number generator. As we show in

the analysis of skip lists, the probability that an insertion will go to a level that is

more than O(log n) is very low, so this design choice should also work.

However, either choice will still result in our being able to perform element

search, insertion, and removal in expected O(log n) time, which we will show in

the next section.

19.6.3 A Probabilistic Analysis of Skip Lists

As we have shown above, skip lists provide a simple implementation of an or-

dered dictionary. In terms of worst-case performance, however, skip lists are not

a superior data structure. In fact, if we don’t officially prevent an insertion from

continuing significantly past the current highest level, then the insertion algorithm

can go into what is almost an infinite loop (it is not actually an infinite loop, how-

ever, since the probability of having a fair coin repeatedly come up heads forever

is 0). Moreover, we cannot infinitely add elements to a list without eventually run-

ning out of memory. In any case, if we terminate item insertion at the highest level

h, then the worst-case running time for performing the find, insert, and remove
operations in a skip list S with n items and height h is O(n + h). This worst-case

performance occurs when the tower of every item reaches level h−1, where h is the

height of S. However, this event has very low probability. Judging from this worst

case, we might conclude that the skip list structure is strictly inferior to the other

dictionary implementations discussed earlier in this chapter. But this would not be

a fair analysis, for this worst-case behavior is a gross overestimate. Because the

insertion step involves randomization, a more honest analysis of skip lists involves

a bit of probability.

562 Chapter 19. Randomized Algorithms

Let us begin with the expected value of the height h of S (assuming that we

do not terminate insertions early). The probability that a given item is stored in a

position at level i is equal to the probability of getting i consecutive heads when

flipping a coin, that is, this probability is 1/2i. Hence, the probability, Pi, that level

i has at least one item is at most Pi ≤ n/2i, for the probability that any one of n
different events occurs is, at most, the sum of the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability

that level i has at least one item, that is, it is no more than Pi. This means that h is

larger than, say, 3 log n with probability at most

P3 log n ≤ n

23 log n
=

n

n3
=

1

n2
.

More generally, given a constant c > 1, h is larger than c log n with probability at

most 1/nc−1. That is, the probability that h is smaller than or equal to c log n is at

least 1 − 1/nc−1. Thus, with high probability, the height h of S is O(log n).
Consider the running time of a search in skip list S, and recall that such a search

involves two nested while-loops. The inner loop performs a scan forward on a level

of S as long as the next key is no greater than the search key k, and the outer

loop drops down to the next level and repeats the scan forward iteration. Since the

height h of S is O(log n) with high probability, the number of drop-down steps is

O(log n) with high probability.

So we have yet to bound the number of scan-forward steps we make. Let ni be

the number of keys examined while scanning forward at level i. Observe that, after

the key at the starting position, each additional key examined in a scan-forward

at level i cannot also belong to level i + 1. If any of these items were on the

previous level, we would have encountered them in the previous scan-forward step.

Thus, the probability that any key is counted in ni is 1/2. Therefore, the expected

value of ni is exactly equal to the expected number of times we must flip a fair

coin before it comes up heads. That is, each ni is a geometric random variable

with parameter 1/2. Thus, E[ni] = 2; hence, the expected amount of time spent

scanning forward at any level i is O(1). Since S has O(log n) levels with high

probability, a search in S takes expected time O(log n). By a similar analysis, we

can show that the expected running time of an insertion or a removal is O(log n).
Moreover, by applying the Chernoff bound for a sum of independent geometric

random variables, given in Theorem 19.15, we can show that searches and updates

in a skip list run in O(log n) time with high probability.

Finally, let us turn to the space requirement of a skip list S. As we observed

above, the expected number of items at level i is n/2i, which means that the ex-

pected total number of items in S is

h
∑

i=0

n

2i
= n

h
∑

i=0

1

2i
< 2n.

Hence, the expected space requirement of S is O(n).

19.7. Exercises 563

19.7 Exercises

Reinforcement

R-19.1 Give a variation of Algorithm 19.2 (randomSort) that runs in O(n) time with
probability 1 − 1/n4.

R-19.2 Suppose two teams, the Anteaters and the Bears, have a long rivalry in basketball.
Suppose further that in any given game, the Anteaters will beat the Bears with
probability 2/3, independent of any other games that they play. Give a bound on
the probability that, in spite of this, the Bears will win a majority of n games that
they play.

R-19.3 Suppose a certain birth defect occurs independently at random with probability
p = 0.02 in any live birth. Use a Chernoff bound to bound the probability that
more than 4% of the 1 million children born in a given large city have this birth
defect.

R-19.4 Suppose a builder, named Bob, wants to hammer in 20 nails into a piece of wood.
Bob is very strong and can hammer down a nail in a single blow if he hits the nail
square on its head. But Bob is also a little near-sighted and, in any given swing
of his hammer, he only hits any given nail square on its head with probability
p = 1/3 and misses it completely with probability 1 − p. Derive a bound on
the probability that it takes Bob more than 120 swings to hammer down all 20
nails.

R-19.5 Suppose A is an array of n bits, half of which are 0’s and half of which are 1’s.
But the bits in A can be in any order, so that the worst-case performance of any
deterministic algorithm for finding a 1 in A is Θ(n). Give a Las Vegas algorithm
that finds a 1 in A in O(log n) time with high probability.

R-19.6 Give a Monte Carlo algorithm for the previous problem that examines at most
⌈log n⌉ entries in A and succeeds in finding a 1 in A with high probability.

R-19.7 Suppose that a well-known collector, Kivas Fajo, is trying to collect each of
50 coupons, as in the coupon collector problem. Derive good upper and lower
bounds on the expected number of times that Kivas has to visit the ticket window
to get all 50 coupons.

R-19.8 Consider the cycle graph, Cn, consisting of vertices v0, v1, . . . , vn−1 and edges
(vi, vi+1 mod n), for i = 0, . . . , n − 1. Clearly, the size of a minimum cut of Cn

is 2. Determine the number of minimum cuts of Cn.

R-19.9 Derive the running time of Algorithm 19.10 (RecursiveContractGraph) using
a recurrence relation.

R-19.10 Show that a graph with n vertices has at most
(

n
2

)

minimum cuts.

R-19.11 Given a parameter, k, suppose we wish to find a number, p, that is prime with
probability 2−k. What is the asymptotic number of arithmetic operations needed?

564 Chapter 19. Randomized Algorithms

R-19.12 Suppose we have a six-sided die, which we roll n times, and let X denote the
number of times we role a 1.

(a) What is E[X]?

(b) Show that X < n/3 with high probability.

R-19.13 Draw an example skip list resulting from performing the following sequence of
operations on the skip list in Figure 19.18: remove(38), insert(8,x), insert(24,y),
remove(55). Assume the coin flips for the first insertion yield two heads fol-
lowed by tails, and those for the second insertion yield three heads followed by
tails.

R-19.14 Give a pseudocode description of the remove dictionary operation, assuming the
dictionary is implemented by a skip-list structure.

Creativity

C-19.1 Suppose that Bob wants a constant-time method for implementing the random(k)
method, which returns a random integer in the range [0, k − 1]. Bob has a source
of unbiased bits, so to implement random(k), he samples ⌈log k⌉ of these bits,
interprets them as an unsigned integer, K, and returns the value K mod k. Show
that Bob’s algorithm does not return every integer in the range [0, k − 1] with
equal probability.

C-19.2 Design a variation of Algorithm 19.2 (randomSort) that inserts the pairs (ri, xi)
into a balanced tree and calls itself recursively when ri is found to be equal to one
of the previously generated random values. Give pseudocode for this variation
of the algorithm and analyze its running time. Also, discuss its advantages and
disadvantages with respect to the original algorithm.

C-19.3 Design a variation of Algorithm 19.2 (randomSort) that begins by generating
distinct random values, ri (i = 1, · · · , n) and then sorts the pairs (ri, xi) .
Give pseudocode for this variation of the algorithm and analyze its running time.
Also, discuss its advantages and disadvantages with respect to the original algo-
rithm.

C-19.4 Consider a modification of the Fisher-Yates random shuffling algorithm where
we replace the call to random(k + 1) with random(n), and take the for-loop
down to 0, so that the algorithm now swaps each element with another element
in the array, with each cell in the array having an equal likelihood of being the
swap location. Show that this algorithm does not generate every permutation
with equal probability.

Hint: Consider the case when n = 3.

C-19.5 Suppose you have a collection, S, of n distinct items and you wish to select a ran-
dom sample of these items of size exactly ⌈n1/2⌉. Describe an efficient method
for selecting such a sample so that each element in S has an equal probability of
being included in the sample.

19.7. Exercises 565

C-19.6 Suppose you have a collection, S, of n distinct items and you create a random
sample, R, of S, as follows: For each x in S, select it to belong to R indepen-
dently with probability 1/n1/2. Derive bounds on the probability that the number
of items in R is more than 2n1/2 or less than n1/2/2.

C-19.7 Suppose that there is a collection of 3n distinct coupons, n of which are colored
red and 2n of which are colored blue. Suppose that each time you go to a ticket
window to get a coupon, the clerk first randomly decides, with probability 1/2,
whether he will give you a red coupon or blue coupon and then he chooses a
coupon uniformly at random from among the coupons that are that color. What
is the expected number of times that you must visit the ticket window to get all
3n coupons?

C-19.8 Show that if we do all arithmetic modulo a prime number, p, then, for any integer
x > 0,

{ix mod p : i = 0, 1, . . . , p − 1} = {i : i = 0, 1, . . . , p − 1}.

Hint: Use the fact that if p is prime, then every nonzero integer less than p has a
multiplicative inverse when we do arithmetic modulo p.

C-19.9 Give an algorithm that computes a minimum cut of a graph with n vertices
by O(n) applications of a maximum flow algorithm to a flow network derived
from G.

C-19.10 Let P (x) be a probability function that satisfies the recurrence P (i+1) ≥ P (i)−
1
4P (i)2, with P (0) a constant. Show that P (2 log n) is Ω

(

1
log n

)

.

C-19.11 Give a randomized algorithm that computes all minimum cuts of a graph with
high probability.

C-19.12 Show that if the compositeness witness function, witness(x, n), of the Rabin-
Miller algorithm returns true, then the number n is composite.

C-19.13 Suppose we have a Monte Carlo algorithm, A, and a deterministic algorithm, B,
for testing if the output of A is correct. How can we use A and B to construct
a Las Vegas algorithm? Also, if A succeeds with probability 1/2, and both A
and B run in O(n) time, what is the expected running time of the Las Vegas
algorithm that is produced?

C-19.14 Suppose X1, X2, . . . , Xn is a set of mutually independent indicator random vari-
ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let
X =

∑n
i=1 Xi be the sum of these random variables, and let µ′ denote an upper

bound on the mean of X , that is, E[X] = µ ≤ µ′. Show that, for δ > 0,

Pr(X > (1 + δ)µ′) <

[

eδ

(1 + δ)(1+δ)

]μ′

.

566 Chapter 19. Randomized Algorithms

C-19.15 Let Y = Y1 + Y2 + · · · + Yn be the sum of n independent geometric random
variables with parameter p. Show that, for α = 1/p,

Pr(Y < 0.25α n) ≤ 0.75n.

C-19.16 Describe how to perform an operation, RangeSearch(k1, k2), which returns all
the items with keys in the range [k1, k2], in an ordered dictionary implemented
with a skip list, and show that it runs in expected time O(log n + s), where n is
the number of elements in the skip list and s is the number of items returned.

C-19.17 Show that the methods above(p) and before(p) are not actually needed to ef-
ficiently implement a dictionary using a skip list. That is, we can implement
item insertion and removal in a skip list using a strictly top-down, scan-forward
approach, without ever using the above or before methods.

C-19.18 Show that the randomized quick-sort algorithm runs in O(n log n) time with high
probability.

Applications

A-19.1 A renowned food critic, Anton Ego, will enjoy a meal only if it is the highest-
quality meal he has ever eaten up to that point in his life. Assuming that the
qualities of the n meals he eats in his life are distinct and come in a random order
over the course of his life, what is the expected number of times that Anton Ego
will enjoy a meal in his life?

A-19.2 In the Mega Millions lottery game, a player picks five lucky numbers, in the range
from 1 to 56, and one additional Mega number, in the range from 1 to 46. In order
to win the jackpot, a player must match all six numbers. If there is no jackpot
winner for a given drawing, then the jackpot is rolled into the next drawing.
Suppose that every time a lottery ticket is sold it is chosen as an independent
random pick of five lucky numbers and a Mega number. What is the expected
number of Mega Millions lottery tickets that must be sold for a given drawing to
guarantee with 100% certainty that there is a winner?

A-19.3 In a famous experiment, Stanley Milgram told a group of people in Kansas and
Nebraska to each send a postcard to a lawyer in Boston, but they had to do it by
forwarding it to someone that they knew, who had to forward it to someone that
they knew, and so on. Most of the postcards that were successfully forwarded
made it in 6 hops, which gave rise to the saying that everyone in America is
separated by “six degrees of separation.” The idea behind this experiment is also
behind a technique, called probabilistic packet marking, for doing traceback
during a distributed denial-of-service attack, where a website is bombarded by
connection requests. In implementing the probabilistic packet marking strategy,
a router, R, will, with some probability, p ≤ 1/2, replace some seldom-used parts
of a packet it is processing with the IP address for R, to enable tracing back the
attack to the sender. It is as if, in the Milgram experiment, there is just one sender,
who is mailing multiple postcards, and each person forwarding a postcard would,
with probability, p, erase the return address and replace it with his own. Suppose

19.7. Exercises 567

that an attacker is sending a large number of packets in a denial-of-service attack
to some recipient, and every one of the d routers in the path from the sender to
the recipient is performing probabilistic packet marking.

(a) What is the probability that the router farthest from the recipient will mark a
packet and this mark will survive all the way to the recipient?

(b) Derive a good upper bound on the expected number of packets that the recip-
ient needs to collect to identify all the routers along the path from the sender to
the recipient.

A-19.4 The Massachusetts state lottery game, Cash WinFall, used to have a way that
anyone with enough money and time could stand a good chance of getting rich,
and it is reported that an MIT computer scientist did just that. In this game, a
player picks 6 numbers from the range from 1 to 46. If he matches all 6, then
he could win as much as $2 million, but the odds of that payout don’t justify a
bet, so let us ignore the possibility of winning this jackpot. Nevertheless, there
were times when matching just 5 of the 6 numbers in a $2 lottery ticket would
pay $100,000. Suppose in this scenario that you were able to bet $600,000.

(a) What is the expected amount that you would win?

(b) Derive a bound on the probability that you would lose $300,000 or more in
this scenario, that is, that you would have 3 or fewer of the 5 of the 6 winning
tickets.

A-19.5 There is a probabilistic data structure often used for representing sets in network-
ing and computer security applications, which is known as the Bloom filter. This
data structure represents a set, S, using of an array, A, of m bits and a collection
of k hash functions, h1, . . . , hk. Initially, all the bits in A are 0. To add an ele-
ment, x, to the set, S, we assign each of the bits, A[h1(x)], A[h2(x)], . . . , A[hk(x)],
to 1. To test if an element belongs to S, we check if all these bits are equal to
1. If so, then we say that x is a member of S and, if not, then we say that x
is not a member of S. Note that this algorithm has a one-sided error, since it is
always correct when it says that x is not in S, but there is a chance that has a
false positive, saying that x belongs to S when really it doesn’t. Assuming that
each hash function maps any element, x, to k distinct random locations in A, and
we have inserted n < kn/2 elements into S, derive a bound on the probability
that a Bloom filter returns a false positive response.

A-19.6 There is a classic surprising fact from probability, known as the birthday para-

dox, which states that in a room of at least 23 people there is better than a 50-50
chance that two of them have the same birthday. This fact is surprising to some,
because there are 366 possible birthdays, which is much larger than 23. While
this is surprising, there is an interesting security application of the analysis that
goes into the birthday paradox. Suppose a company is installing a keypad on its
entry door and will be assigning each employee with an independently chosen 8-
digit PIN to use when they enter the building. So there are 100 million possible
PINs, but let us use n to denote this number of possible PINs and m to denote
the number of employees.

(a) Imagine that we assign PINs to employees sequentially, one employee at a
time. What is the probability, pi, that the ith employee has a distinct PIN given
that the i − 1 PINs given before are distinct?

568 Chapter 19. Randomized Algorithms

(b) Note that the probability the PINs are all distinct is the product of the pi’s, for
i = 1, 2, . . . ,m. Use the fact that 1 − x ≤ e−x, for 0 < x < 1, to show that this

product is bounded by e−m2/2n.

(c) Given the above bound, how many PINs does the system need to produce so
that the probability that two employees have the same PIN is at least 1/2?

Chapter Notes

The Rabin-Miller primality testing algorithm is presented in [177]. Random shuffling is

discussed by Fisher and Yates [71], Durstenfeld [59], and Knuth [131]. Arkin et al. [13]

describe how they were able to exploit a poorly designed random shuffling algorithm to

defeat online poker systems. The stable marriage problem was first studied by Gale and

Shapley [78], and they present a proposal-based algorithm for solving it. Our analysis of

the stable marriage problem is based on unpublished course notes by John Canny. The

randomized processor load balancing application we mention for Chernoff bounds is from

in a paper by Raab and Steger [176]. The randomized minimum cut algorithm based on

contractions was introduced by Karger [118] and improved by Karger and Stein [120].

Skip lists were introduced by Pugh [175]. Our analysis of skip lists is a simplification of a

presentation given in the book by Motwani and Raghavan [162]. In addition, there are also

other more in-depth analyses of skip lists [126, 168, 172], as well as a binary-tree analogue

due to Seidel and Aragon [191].

